
Overview
I wrote this program as learning example on how to convert a 
straight-line Unix-C program into a finished NextStep/Objective-C 
Application.    The actual conversion effort turned out to be much 
easier than I anticipated. 

I had already written a command line program that calculated a 
sphere and output it as PostScript-code to stdout (sphere [parameter
list] > output.ps).    I was able to convert this program into a Next 
App in about 4 hours.    

IB & Objective-C



The first step was to create the main window in Interface Builder -- 
using sliders and buttons in place of the Unix command-line 
parameters.

Next, I subclassed object to create a SphereDrawerObject which 
contains all of the drawing & shading routines from my original Unix-
C code (some functions still need to be turned into methods, but the 
code works as is). 

I then created a sub-class of view called SphereView and overrode 
the initFrame: and drawSelf:: methods.    The drawSelf:: method 
messages the SphereDrawerObject which outputs postscript code 
into the view.    Because this happens INSIDE drawSelf:: rather than 
locking-focus & drawing INTO the instance of SphereView, it makes 
the print-routine trivial to implement (click&drag from the print 
menu-button to the view and connect the printPSCode: target 



method).

Last (but far from least) I subclassed object to create my controller 
(SphereControl).    All of the program variables are stored in this 
object and methods to read and write each instance variable are 
implemented.    Also, all of the program controls are routed through 
this object.    

The Sphere Program
The light source is fixed in the Z-direction and the program uses 
lambert's law of cosines to calculate the shading.

Moving the sliders for theta and phi actually move the eyepoint 
around the sphere, rather than rotating the sphere (only apparent if 
shading is turned on).



Be sure to try low settings on the latitude and longitude sliders 
(interesting non-spherical shapes are generated by the sphere 
algorithm).        

Special thanks to Tyler Gingrich for helping teach me 
many of the basics about programming on the NeXT.


